Serveur d'exploration SDRA et décubitus ventral

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas exchange in the ventilated patient.

Identifieur interne : 000517 ( Main/Exploration ); précédent : 000516; suivant : 000518

Gas exchange in the ventilated patient.

Auteurs : Göran Hedenstierna [Suède] ; Marco Lattuada

Source :

RBID : pubmed:12205405

Descripteurs français

English descriptors

Abstract

Increased knowledge of the pathophysiologic mechanisms of impaired gas exchange during acute respiratory failure during recent years has stimulated many studies that evaluate different treatments to improve oxygenation and outcome. Changes in body position (mainly prone positioning) can significantly improve gas exchange in patients with acute respiratory distress syndrome and acute lung failure, with few complications related to the maneuver; however, no survival advantage has yet been detected. A correlation between aerated lung tissue and oxygenation also confirms the importance of recruitment maneuvers in improving gas exchange. Recent suggestions that recruitment of alveoli proceeds during most of the inspired vital capacity and not only around the lower inflection point of the pressure-volume curve raises the question how to best perform recruitment maneuvers. New data support the hypothesis that maintenance of even small amount of spontaneous breathing during mechanical ventilation (with airway pressure release ventilation or biphasic positive airway pressure) can improve gas exchange, whereas other unconventional ventilatory modes have not yet proved advantageous. Some mechanisms responsible for the high percentage of nonresponse to inhaled nitric oxide have recently been proposed, and combinations of inhaled nitric oxide with other therapies have been tested. Increased knowledge in this area may, in the future, make inhaled nitric oxide more attractive in the treatment of adult respiratory failure as well as in neonatal intensive care.

DOI: 10.1097/00075198-200202000-00007
PubMed: 12205405


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gas exchange in the ventilated patient.</title>
<author>
<name sortKey="Hedenstierna, Goran" sort="Hedenstierna, Goran" uniqKey="Hedenstierna G" first="Göran" last="Hedenstierna">Göran Hedenstierna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala, Sweden. goran.hedenstierna@medsci.uu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lattuada, Marco" sort="Lattuada, Marco" uniqKey="Lattuada M" first="Marco" last="Lattuada">Marco Lattuada</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12205405</idno>
<idno type="pmid">12205405</idno>
<idno type="doi">10.1097/00075198-200202000-00007</idno>
<idno type="wicri:Area/Main/Corpus">000505</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000505</idno>
<idno type="wicri:Area/Main/Curation">000505</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000505</idno>
<idno type="wicri:Area/Main/Exploration">000505</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gas exchange in the ventilated patient.</title>
<author>
<name sortKey="Hedenstierna, Goran" sort="Hedenstierna, Goran" uniqKey="Hedenstierna G" first="Göran" last="Hedenstierna">Göran Hedenstierna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala, Sweden. goran.hedenstierna@medsci.uu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lattuada, Marco" sort="Lattuada, Marco" uniqKey="Lattuada M" first="Marco" last="Lattuada">Marco Lattuada</name>
</author>
</analytic>
<series>
<title level="j">Current opinion in critical care</title>
<idno type="ISSN">1070-5295</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Humans (MeSH)</term>
<term>Nitric Oxide (therapeutic use)</term>
<term>Prone Position (MeSH)</term>
<term>Pulmonary Gas Exchange (physiology)</term>
<term>Respiration, Artificial (methods)</term>
<term>Respiratory Distress Syndrome, Adult (physiopathology)</term>
<term>Respiratory Distress Syndrome, Adult (therapy)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Décubitus ventral (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Monoxyde d'azote (usage thérapeutique)</term>
<term>Syndrome de détresse respiratoire de l'adulte (physiopathologie)</term>
<term>Syndrome de détresse respiratoire de l'adulte (thérapie)</term>
<term>Ventilation artificielle (méthodes)</term>
<term>Échanges gazeux pulmonaires (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Nitric Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Respiration, Artificial</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Ventilation artificielle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Échanges gazeux pulmonaires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pulmonary Gas Exchange</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Syndrome de détresse respiratoire de l'adulte</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Respiratory Distress Syndrome, Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Respiratory Distress Syndrome, Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="thérapie" xml:lang="fr">
<term>Syndrome de détresse respiratoire de l'adulte</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Monoxyde d'azote</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Prone Position</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Décubitus ventral</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increased knowledge of the pathophysiologic mechanisms of impaired gas exchange during acute respiratory failure during recent years has stimulated many studies that evaluate different treatments to improve oxygenation and outcome. Changes in body position (mainly prone positioning) can significantly improve gas exchange in patients with acute respiratory distress syndrome and acute lung failure, with few complications related to the maneuver; however, no survival advantage has yet been detected. A correlation between aerated lung tissue and oxygenation also confirms the importance of recruitment maneuvers in improving gas exchange. Recent suggestions that recruitment of alveoli proceeds during most of the inspired vital capacity and not only around the lower inflection point of the pressure-volume curve raises the question how to best perform recruitment maneuvers. New data support the hypothesis that maintenance of even small amount of spontaneous breathing during mechanical ventilation (with airway pressure release ventilation or biphasic positive airway pressure) can improve gas exchange, whereas other unconventional ventilatory modes have not yet proved advantageous. Some mechanisms responsible for the high percentage of nonresponse to inhaled nitric oxide have recently been proposed, and combinations of inhaled nitric oxide with other therapies have been tested. Increased knowledge in this area may, in the future, make inhaled nitric oxide more attractive in the treatment of adult respiratory failure as well as in neonatal intensive care.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12205405</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1070-5295</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2002</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in critical care</Title>
</Journal>
<ArticleTitle>Gas exchange in the ventilated patient.</ArticleTitle>
<Pagination>
<MedlinePgn>39-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Increased knowledge of the pathophysiologic mechanisms of impaired gas exchange during acute respiratory failure during recent years has stimulated many studies that evaluate different treatments to improve oxygenation and outcome. Changes in body position (mainly prone positioning) can significantly improve gas exchange in patients with acute respiratory distress syndrome and acute lung failure, with few complications related to the maneuver; however, no survival advantage has yet been detected. A correlation between aerated lung tissue and oxygenation also confirms the importance of recruitment maneuvers in improving gas exchange. Recent suggestions that recruitment of alveoli proceeds during most of the inspired vital capacity and not only around the lower inflection point of the pressure-volume curve raises the question how to best perform recruitment maneuvers. New data support the hypothesis that maintenance of even small amount of spontaneous breathing during mechanical ventilation (with airway pressure release ventilation or biphasic positive airway pressure) can improve gas exchange, whereas other unconventional ventilatory modes have not yet proved advantageous. Some mechanisms responsible for the high percentage of nonresponse to inhaled nitric oxide have recently been proposed, and combinations of inhaled nitric oxide with other therapies have been tested. Increased knowledge in this area may, in the future, make inhaled nitric oxide more attractive in the treatment of adult respiratory failure as well as in neonatal intensive care.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hedenstierna</LastName>
<ForeName>Göran</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Sciences, Clinical Physiology, University Hospital, Uppsala, Sweden. goran.hedenstierna@medsci.uu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lattuada</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Opin Crit Care</MedlineTA>
<NlmUniqueID>9504454</NlmUniqueID>
<ISSNLinking>1070-5295</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016684" MajorTopicYN="N">Prone Position</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011659" MajorTopicYN="N">Pulmonary Gas Exchange</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012121" MajorTopicYN="N">Respiration, Artificial</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012128" MajorTopicYN="N">Respiratory Distress Syndrome, Adult</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>39</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12205405</ArticleId>
<ArticleId IdType="doi">10.1097/00075198-200202000-00007</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lattuada, Marco" sort="Lattuada, Marco" uniqKey="Lattuada M" first="Marco" last="Lattuada">Marco Lattuada</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Hedenstierna, Goran" sort="Hedenstierna, Goran" uniqKey="Hedenstierna G" first="Göran" last="Hedenstierna">Göran Hedenstierna</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrdaDecubitusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000517 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000517 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrdaDecubitusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12205405
   |texte=   Gas exchange in the ventilated patient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12205405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrdaDecubitusV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 08:17:07 2020. Site generation: Sat Mar 27 13:26:33 2021